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Abstract—When sound propagates in the shallow ocean, source
characteristics complicate the analysis of received acoustic data

considerably especially when they are broadband and spatially
complex. Noise whether ambient, distant shipping, wind blown

surface generated complicates this already chaotic environment
even further primarily because these disturbances propagate

through the same inherent oceanic medium. The broadband
problem can be decomposed into a set of narrowband problems

by decomposing the source spectrum into its set of narrowband
lines. A generic Bayesian solution to the broadband pressure-field

enhancement and modal function extraction problem is developed
that leads to a so-called nonparametric estimate of the desired

posterior distribution enabling statistical inference.

Index Terms—littoral region, normal-modes, broadband
Bayesian processor, sequential Monte Carlo, particle filter

I. INTRODUCTION

The characterization of transient sources has long been a

problem with keen interest in the ocean acoustic community

primarily because most targets are broadband. Initially, the

work of many [1]-[9] began with a simple temporal matched-

filter approach where a known source location was used to

provide a replica employed to match to the measured data.

An alternative to the temporal matched-filter approach evolved

as a natural extension to model-based, matched-field/matched

mode processing entailing the matching of a predicted to a

measured pressure-field under an assumed source location.

Matched-mode processing of broadband source signals also

offers an improved enhancement capable of not only local-

izing the transient target, but also capable of estimating its

broadband temporal spectrum [7]-[9].

Uncertainty of the ocean environment motivates the use

of stochastic models to capture the random nature of the

phenomena ranging from ambient noise and scattering to

distant shipping and the nonstationary nature of this hostile

medium. Therefore, processors that do not take these effects

into account are doomed to large errors [10]-[14]. When con-

templating the broadband problem it is quite natural to develop

temporal techniques especially if the underlying model is the

full wave equation; however, if we assume a normal-mode

propagation model then it is more natural to: (1) filter the

broadband receiver outputs into narrow bands; (2) process

each band with a devoted processor; and then (3) combine

the narrowband results to create a broadband solution.

The methodology employed is based on a state-space rep-

resentation of the normal-mode propagation model as before

[11]. It has already been shown that the state-space repre-

sentation can be utilized for signal enhancement to spatially

propagate modal and range functions in both the narrow-

band and broadband cases [11], [12]. In the random case, a

stochastic model evolves allowing the inclusion of uncertain

phenomena such as noise and modeling errors in a consistent

manner [11], [12]. In our case, the measurement noise can be

lumped to represent the near-field acoustic noise field, flow

noise on the hydrophones and electronic noise, whereas the

modal/range uncertainty can also be lumped to represent sound

speed profile errors, spatially correlated noise from distant

shipping, errors in the boundary conditions, sea state effects

and ocean inhomogeneities [15].

We develop a generic Bayesian approach to solve the broad-

band enhancement problem primarily because it can easily be

extended to solve a wide variety of general ocean acoustic

problems that are not restricted to additive unimodal stochastic

processes. This approach leads directly to the so-called particle

filter (PF) that is a sequential Markov chain Monte Carlo

(MCMC) Bayesian processor capable of providing reasonable

performance for a multi-modal problem estimating a nonpara-

metric representation of the posterior distribution [16]-[18].

We provide a brief discussion of the broadband problem in

Sec. II and develop the underlying state-space model struc-

tures. Next in Sec. III, we develop the broadband Bayesian

processor showing that it provides a generic Bayesian solution

to the signal enhancement problem and apply it to noisy data

synthesized from a littoral region. A shallow ocean simulation

is developed in Sec. IV illustrating the construction of the pro-

cessor as well as its performance when applied to synthesized

noisy broadband pressure-field data. We summarize our results

in the final section and discuss future work.

II. BROADBAND STATE-SPACE PROPAGATORS

In this section we summarize the development of a broad-

band (state-space) propagator. This propagator is embedded in

the Bayesian particle filter solution. Next we briefly discuss the

broadband normal-mode extension and then the transformation

of this underlying model to state-space form.

A. Broadband Normal-Modes

It is well-known [2], [8], [13] in ocean acoustics that

the pressure-field solution to the Helmholtz equation under

the appropriate assumptions can be expressed as the sum of



normal modes. The Fourier transform of the pressure-field

gives

p(r, z, ωo) =

M
∑

m=1

aHo (κr(m)r) φm(zs)φm(z)δ(ω−ωo) (1)

indicating a narrowband solution or equivalently a line at ωo

in the temporal frequency domain.

This modal representation has been extended to include a

broadband source, s(t), with corresponding spectrum, Ss(ω)
by [8]-[10]. In this case, the ocean medium is specified by its

Green’s function (impulse response) which can be expressed

in terms of the inherent normal modes spanning the water

column

G(r, z, ω) :=
∑

m

Ho (κr(m)r) φm(zs, ω)φm(z, ω) (2)

Here r and zs are the source range and depth coordinates,

respectively and φm(z, ω) is the mth modal or eigensolution,

satisfying the vertical or depth equation obtained through

separation of variables applied to the Helmholtz equation [2]

given by

d2

dz2
φm(z, ω) + κ2

z(m, ω)φm(z, ω) = 0. (3)

The wave numbers satisfy the corresponding dispersion

relation

ω2

c2(z)
= κ2

r(m, ω) + κ2
z(m, ω), m = 1, . . . , M (4)

where κz is the vertical wave number and c(z) the depth-

dependent sound speed profile as before.

If the continuous source spectrum is decomposed into a

sampled or discrete spectrum using a periodic impulse (fre-

quency) sampler [14], then it follows that

Ss(ω) = 4ω
∑

q

S(ω)δ(ω − ωq) = 4ω
∑

q

S(ωq)δ(ω − ωq)

(5)

from the sampling properties of the Fourier transform [14].

Therefore a broadband signal spectrum can be decomposed

into a set of narrowband components assuming an impulse

sampled spectrum at each spectral bin, q4ω.

Utilizing this property in Eq. 5 and extracting just the qth

source frequency, we have that

p(r, z, ωq) = G(r, z, ω)Ss(ωq) (6)

where Ss(ωq) can be interpreted as a single narrowband

impulse at ωq with amplitude, aq = 4ω|S(ωq)|. Suppose

that the broadband source is assumed to be bandlimited and

sampled (as before), that is,

Ss(ω) ω1 ≤ ω ≤ ωQ (7)

then

Ss(ω) = 4ω

Q
∑

q=1

S(ωq)δ(ω − ωq) (8)

Thus, the normal-mode solution to the Helmholtz equation

for the broadband source problem can be decomposed into a

series of narrowband solutions {ωq}; q = 1, · · · , Q, that is,

p(r, z, ωq) =

Mq
∑

m=1

aqHo (κr(m, q)r)φm(zs, ωq)φm(z, ωq)

(9)

B. State-Space Propagators

It is well-known [11], [12] that the state-space propagators

for the narrowband pressure-field can be obtained from the

depth relationship and the broadband extensions discussed.

Following the development in Ref[12], we define the modal

state vector for the mth mode, at frequency ωq, as

Φm(z, ωq) =

[

φm(z, ωq)
d
dz

φm(z, ωq)

]

, m = 1, · · · , Mq. (10)

Equation 5 can now be written in state-space form as

d

dz
Φm(z, ωq) = Am(z, ωq)Φm(z, ωq), (11)

where

Am(z, ωq) =

[

0 1
−κ2

z(m, q) 0

]

, m = 1, · · · , Mq . (12)

Expanding over the Mq modes at each narrowband frequency

ωq component, we have that

d

dz
Φ(z, ωq) = A(z, ωq)Φ(z, ωq) (13)

with A(z, ωq) = diag[A1(z, ωq)| · · · |AMq
(z, ωq)] the single

frequency state vector defined by

ΦT (z, ωq) :=
[

ΦT
1 (z, ωq) · · ·Φ

T
Mq

(z, ωq)
]

(14)

for ΦT (z, ωq) ∈ R2Mq×1.

Suppose we further assume an L-element vertical sensor

array, then z → z`, ` = 1, · · · , L and therefore, the pressure-

field at the array for the qth temporal frequency of Eq. 9

becomes

p(r, z`, ωq) =

Mq
∑

m=1

βm(r, z`, ωq)φm(z`, ωq) (15)

where βm(r, z`, ωq) := aqHo (κr(m, q)r)φm(zs, ωq) is the

mth-modal coefficient at the qth temporal frequency.

Thus, the broadband pressure-field at the `th-sensor is

simply



p(r, z`) =
1

Q

Q
∑

q=1

p(r, z`, ωq) (16)

which corresponds to incoherently summing all of the nar-

rowband solutions over the discrete spectral lines (bins) [7],

[12]. Thus, the amount of spectral energy “seen” at the

`th-sensor in the qth-spectral bin (ωq = q4ω) is defined

by p(r, z`, ωq) and therefore the total energy seen by the

array in the qth-bin is given by the set of sensor outputs,

P̄ (ωq) := {p(z1, ωq), · · ·p(zL, ωq)}.

Therefore, if we sample the spatial pressure-field with a

vertical line array of hydrophones, then at the `th hydrophone

we have

p(z`, ωq) = CT
q (rs, zs, ωq)Φ(z`, ωq) (17)

with the measurement matrix given by

CT
q (rs, zs, ωq) =

[

β1(rs, zs, ωq) 0| · · · |βMq
(rs, zs, ωq) 0

]

(18)

where CT
q ∈ R1×Mq , r → rs to give

βm(rs, zs, ωq) := Ho(κr(m, q)rs)φm(zs, ωq) (19)

These relations constitute the state equation and mea-

surement equation, respectively, to be applied for temporal

frequency ωq . This model is only valid for a single temporal

frequency, ωq. Extending it to the broadband case, we see from

Eqs. 11 and 12 that as the temporal frequency (ωq) changes,

the corresponding numbers of modes (Mq) and horizontal

wave numbers (κr(m, q)) at each frequency also change. Thus,

the state-space propagator for the broadband case must allow

for this frequency dependence.

Bearing this issue in mind, we now define the overall

broadband state-space propagator as

d

dz
Φ(z, Ω) = A(z, Ω)Φ(z, Ω) (20)

with

A(z, Ω) = diag [A(z, ω1) · · ·A(z, ωQ)] , A(z, ω) ∈ R2M×2M

(21)

and

ΦT (z`, Ω) :=
[

ΦT (z`, ω1) · · · ΦT (z`, ωQ)
]

(22)

for ΦT (z`, Ω) ∈ R2M×1 and (as before),

Am(z, ωq) =

[

0 1
−κ2

z(m, q) 0

]

(23)

with q = 1, . . . , Q ≤ N ; m = 1, . . . , Mq. The parameter

M , the total number of single frequency modes, is given

by M =
∑Q

1 Mq . Note that we use the parameter “Ω”

to signify the entire set of discrete temporal frequencies,

{ωq}, q = 1, · · · , Q.

Finally, the overall broadband pressure measurement equa-

tion takes the following form where we choose to make a

incoherent average over temporal frequencies, that is,

p(z`, Ω) = C(rs, zs, Ω)Φ(z`, Ω) (24)

with

C(rs, zs, Ω) =
1

Q

[

CT
1 (rs, zs, ω1) · · · CT

Q(rs, zs, ωQ)
]

(25)

for C ∈ R1×M .

C. Stochastic State-Space Propagators

The stochastic nature of this broadband ocean acoustic

problem requires the introduction of uncertainties not just in

the overall propagation of noise and disturbances, but also in

the parametric uncertainties in the underlying modal models.

For these reasons we incorporate additive stochastic processes

to capture the noisy, varying shallow ocean medium, that is,

discretizing Eq. 20 using central differences [23] gives

Φ(z`, Ω) = A(z`−1, Ω)Φm(z`−1, Ω) + w(z`−1, Ω)

p(z`, Ω) = C(rs, zs, Ω)Φ(z`, Ω) + v(z`, Ω) (26)

where w is an independent, uncorrelated, zero-mean process

with spectral covariance Rww(z`, Ω), v ∼ N (0, Rvv(z`, Ω))
and Φ(z0, Ω) ∼ N (Φ(z0, Ω), Rφφ(zo, Ω)).

This completes the fundamental state-space representation

providing the required ocean acoustic models for the subse-

quent processor.

III. BROADBAND BAYESIAN PROCESSOR

In order to develop the Bayesian processor, we must cast our

problem into a probabilistic framework under these assump-

tions; therefore, our sequence of pressure-field measurements

at each sensor are Fourier transformed to yield a discrete set

of frequencies {ωq}, q = 1, · · · , Q and the set of broadband

sensor measurements, {p(z`, Ω)}, ` = 1, · · · , L. Note that

the window length of the Fourier transform is determined by

the temporal correlation time of the measurement (source) to

assure the independence of the frequency samples. For our

pressure-field/modal function estimation problem, we define

the underlying broadband pressure-field/modal function en-

hancement problem as:

GIVEN a set of noisy broadband pressure-field measure-

ments, P` := {p(z1, Ω), · · · , p(z`, Ω)} and the underlying

stochastic model of Eq. 26, FIND the best estimate of

the posterior distribution, Pr [Φ(z`, Ω)|P`] to infer the en-

hanced broadband modal functions, Φ̂(z`, Ω) and pressure-

field, p̂(z`, Ω) .

The Bayesian solution to this problem can be obtained by

estimating the a posteriori distribution as follows.



Pr [Φ(z`, Ω)|P`] =
Pr [Φ(z`, Ω), P`]

Pr [P`]
(27)

but from Bayes’ rule we have that

Pr [Φ(z`, Ω)|P`] =

Pr [p(z`, Ω)|Φ(z`, Ω), P`−1]× Pr [Φ(z`, Ω), P`−1]

Pr [p(z`, Ω)|P`−1]× Pr [P`−1]
(28)

Now expanding the second term in the numerator again using

Bayes’ rule, we have

Pr [Φ(z`, Ω), P`−1] = Pr [Φ(z`−1, Ω)|P`−1]× Pr [P`−1]
(29)

Substituting this relation in the previous equation and can-

celling like terms we obtain the required expression for the

posteriori density

Pr [Φ(z`, Ω)|P`] =

Pr [p(z`, Ω)|Φ(z`, Ω), P`−1] × Pr [Φ(z`, Ω)|P`−1]

Pr [p(z`, Ω)|P`−1]

(30)

A. Broadband Particle Filters

One approach to estimate the required posterior distribution

from noisy broadband measurements is to develop the so-

called particle filter (PF) [16]. A particle filter provides an

estimate of an empirical probability mass function (PMF)

that approximates the desired posterior distribution such that

statistical inferences can easily be performed and statistics

extracted directly. As expected the computational burden of

the PF is much higher that of other processors, since it

must provide an estimate of the underlying state posterior

distribution component-by-component at each z`-step along

with the fact that the number of samples to characterize the

distribution is equal to the number of particles.

P̂r[Φ(z`, Ω)|P`] =

Np
∑

i=1

Wi(z`, Ω)δ
(

Φ(z`, Ω) − Φi(z`, Ω)
)

(31)

Wi(z`, Ω) ∝ P̂r[Φi(z`, Ω)|P`]

is the estimated weights at depth z`

Φi(z`, Ω) is the i-th particle at depth z`

P̂r[·] is the estimated empirical distribution

P` is the set of batch pressure-field

measurements,P` = {p(rs, z1) · · · p(rs, z`)}

Thus, we see that once the underlying posterior is available,

the estimates of important statistics can be extracted directly.

For instance, the maximum a posteriori (MAP) estimate is

simply found by locating a particular particle φ̂i(z`) corre-

sponding to the maximum of the PMF, that is,

Φ̂MAP
i (z, Ω) = maxi P̂r[Φi(z`, Ω)|P`] (32)

while the conditional mean or equivalently the minimum

mean-squared error (MMSE) estimate is calculated by inte-

grating the posterior as:

Φ̂MMSE
i (z, Ω) ≈

1

Np

Np
∑

i=1

Wi(z`, Ω)Φi(z`, Ω) (33)

The generic solution of the particle filter is based on

deriving the associated weighting function. A sampling or

equivalently importance distribution I
(

Φ(z`, Ω)|P`

)

is se-

lected first, then the weight is determined by the ratio of the

desired posterior to this choice [16]

W
(

z`, Ω
)

:=
Pr

[

Φ(z`, Ω)|P`

]

I
(

Φ(z`, Ω)|P`

)

which can be expanded using Bayes’ rule to give the “sequen-

tial” generic weight

W
(

z`, Ω
)

:= W
(

z`−1, Ω
)

×

Pr
[

p(z`, Ω)|Φ(z`, Ω)
]

× Pr
[

Φ(z`, Ω)|Φ(z`−1, Ω)
]

I
(

Φ(z`, Ω)|P`

)

(34)

where the numerator is simply the product of the usual

likelihood and the so-called state transition probability.

B. Bootstrap Particle Filters

There are a variety of PF algorithms available based on

the choice of the importance distribution [16], [17]. Perhaps

the simplest is the bootstrap technique [22]. The PF design

for our problem using the bootstrap approach selects the state

transition probability as its importance distribution, that is,

I
(

Φ(z`, Ω)|P`

)

:= Pr
[

Φ(z`, Ω)|Φ(z`−1, Ω)
]

(35)

leading to the weighting function

W
(

z`, Ω
)

= W
(

z`−1, Ω
)

× Pr
[

p(z`, Ω)|Φ(z`, Ω)
]

(36)

which is simply the likelihood distribution.

For the bootstrap implementation, we need only draw noise

samples from the state distribution and use the dynamic model

of Eq. 26 to generate the set of particles, {Φi(z`, |Ω)} for each

i = 1, · · · , Np.



The likelihood, on the other hand, is determined from the

pressure-field measurement model, that is, for each mode we

have

pi(z`, Ω) = C(rs, zs, Ω)Φi(z`, Ω) + v(z`, Ω) (37)

and therefore the scalar likelihood (assuming Gaussian mea-

surement noise) is

Pr[p(z`, Ω)|Φ(z`, Ω)] =
1

√

2πRvv(Ω)
×

exp
{

−
1

2Rvv(Ω)

(

p(z`, Ω) −C(rs, zs, Ω)Φi(z`, Ω)
)2}

(38)

Thus, we estimate the posterior distribution using a sequen-

tial Monte Carlo approach and construct a bootstrap particle

filter [16] using the following steps:

• Initialize: Φi(0, Ω), wz`,Ω ∼ N (0, Rww(Ω), Wi(0, Ω) =
1/Np; i = 1, · · · , Np;

• State Transition: Φi(z`, Ω) = A(z`−1, Ω)Φi(z`−1, Ω) +
wi(z`−1, Ω);

• Likelihood Probability: Pr[p(z`, Ω)|Φ(z`, Ω)] of Eq. 38;

• Weights: Wi(z`, Ω) = Wi(z`−1, Ω) ×
Pr[p(z`, Ω)|Φ(z`, Ω)];

• Normalize: Wi(z`, Ω) = Wi(z`,Ω)
∑

Np

i=1
Wi(z`,Ω)

;

• Resample: Φ̃i(z`, Ω) ⇒ Φi(z`, Ω);

• Posterior: P̂r[Φi(z`, Ω)|P`] =
∑Np

i=1 Wi(z`, Ω)δ(Φ(z`, Ω) − Φi(z`, Ω)); and

• MAP Estimate: Φ̂MAP
i (z, Ω) = maxi P̂r[Φi(z`, Ω)|P`];

• MMSE Estimate: Φ̂MMSE
i (z, Ω) =

1
Np

∑Np

i=1 Wi(z`, Ω)Φi(z`, Ω)

IV. BROADBAND BAYESIAN DESIGN FOR A

SHALLOW OCEAN

In this section we discuss the application of the Bayesian

processor to data synthesized by a broadband normal-mode

model using the state-space forward propagator and the under-

lying stochastic representation of the previous section. In order

to develop the propagator we first must define the shallow

water boundary value problem and solve it to obtain the

parameters required for the processor.

It is important to realize that the state-space “forward” prop-

agators do not offer an alternative solution to the Helmholtz

equation, but rather use the parameters from the boundary

value solution to obtain a set of initial conditions/parameters

for propagator construction. Therefore, in order to implement

the processor modal parameters (e.g. wave numbers, sound

speed, etc.) of the ocean medium under investigation must be

provided or else jointly estimated in a parametrically adaptive

scheme [23], [24]. This is not uncommon in any of the

model-based approaches [14]. Modal parameters, Θ(z`, Ω),
are obtained using, for example, SNAP [19], KRACKEN [20],

SAFARI [21] providing initial parameter estimates and inputs

to the Bayesian processor for a variety of applications.

Consider a basic shallow water ocean channel assuming a

flat bottom, range independent three layer environment with

a channel depth of 100m, a sediment depth of 2.5m and a

subbottom. A vertical line array of 100-sensors with spacing

of 4z = 1m spans the entire water column and a broadband

source of unit amplitude and 50Hz bandwidth ranging from

50−100Hz in 10Hz increments is located at a depth of 50m
and a range of 10Km from the array. The sound speed profile

in the water column and the sediment are sketched in the figure

and specified along with the other problem parameters in Table

I. SNAP, a normal-mode propagation simulator [19] is applied

to solve this shallow water problem and executed over the set

of discrete temporal source frequencies shown in Table I as

well. This boundary value problem was solved using SNAP

and the results at each narrowband frequency are shown in

Table II below. We note from the Table (as expected) that

as the temporal frequency increases, the number of modes

increases.

Next we design the state-space propagator. The parameters

obtained from SNAP are now used to construct the broadband

state-space and measurement models of Eq. 26. Here we

use the set of horizontal wave numbers, {κ(m, q)}, m =
1, · · · , Mq; q = 1, · · · , Q, and sound speed, {c(z`)}, to im-

plement the state-space models along with the corresponding

modal function values, {Φ(zs, ωq)}, as well as the Hankel

functions, {Ho(κ(m, q)rs)} to construct the measurement

models (modal coefficients).

The final set of parameters for our simulation are the modal

and measurement noise covariance matrices required by the

stochastic model. Both are specified by the input (modal) and

output (measurement) signal-to-noise ratios (SNR) defined by:

SNRin :=
Cov

(

Φm(z`, ωq)
)

m,m

Rww(m, m)
, m = 1, · · · , Mq

SNRout :=
C(r, z, Ω)Cov

(

Φm(z, Ω)
)

CT (r, z, Ω)

Rvv

(39)

With this information in hand, the stochastic simulation was

performed at SNRin = 10dB (noise free) and SNRout =
0db. A typical realization is shown in Figs. 4 and 6 where the

uncertain set of modal functions at each frequency are depicted

in Fig. 4 along with the measured pressure-field (0dB)in Fig.

6. The Bayesian processor is then designed using the identical



set of parameters used in the shallow water simulation. We

can consider this simulation as a bound on the best that can

be achieved.

Table I. Shallow Ocean Simulation Parameters (SNAP)
Problem Parameters

Parameter Water Sediment Bottom

Depth(m) 100 2.5 -

Density(G/cm3 1 1.8 1.84

Attenuation(dB/NL) 0.13 0.15 0.0

Source

Frequency(Hz) 50-100

Range(Km) 10

Depth(m) 50

SoundSpeed

0.0 1503.0 1597.95 1597.95

0.1 1597.95

0.2 1522.58

1.6 1537.65

2.5 1552.73

5.0 1503.1

10.0 1503.2

15.0 1503.3

20.0 1503.4

100.0 1504.7

In modal/pressure-field estimation it is important to realize

the overall design philosophy. First, a key issue is that the error

(residual or innovation) sequence that is the difference between

measured and predicted pressure-fields should be zero-mean

and uncorrelated (white), if all correlated (modal) information

has been captured by the processor, that is,

ε(z`, Ω) := p(z`, Ω) − p̂(z`, Ω) (40)

Thus, as a starting point designs are not considered “tuned”

unless this condition is satisfied; therefore, the free param-

eters in the processor (usually initial conditions and pro-

cess/measurement noise vectors/matrices) are adjusted until

this condition is achieved. Once satisfied, then and only then

can the state (modal function) and measurement (pressure-

field) estimates along with their associated covariances be con-

sidered viable. This is a consistent metric applied throughout

the statistical signal processing community [14]. To test that

the residual sequence is zero-mean, white we use the sample

statistics (whiteness test), the weighted sum-squared residual

statistic as metrics [16]. The usual whiteness/zero-mean tests,

that is, testing that 95% of the sample (normalized) residual

correlations lie within the bounds or equivalently 5% or less

fall outside the bounds.

Table II. Shallow Ocean Boundary Solutions

SNAP Parameters

Freq(Hz) Mode No. Modal Coeff. Wave No.

50 1 0.122 0.207386

2 -0.070 0.202489

60 1 0.125 0.249339

2 -0.063 0.245106

3 -0.097 0.237639

70 1 0.127 0.291255

2 -0.057 0.287522

3 -0.108 0.280907

80 1 0.129 0.333144

2 -0.052 0.329802

3 -0.113 0.323913

4 0.087 0.315526

90 1 0.130 0.375015

2 -0.047 0.371985

3 -0.117 0.366685

4 0.084 0.358997

100 1 0.131 0.416871

2 -0.043 0.414098

3 -0.119 0.409278

4 0.079 0.402279

5 0.081 0.393399

When data are nonstationary then a more reliable statistic

to use is the weighted sum-squared residual (WSSR) which

is a measure of the overall global estimation performance for

the Bayesian processor, determining the “whiteness” of the

residual error (innovation) sequence [14]. It uses this sequence

to test whiteness by requiring that the constructed decision

function lies below a specified threshold. If the WSSR statistic

does lie beneath the calculated threshold, then theoretically,

the estimator is tuned and said to converge. Here the window

is designed to slide through the residual data and estimate

its whiteness. Thus, overall performance of the processor

can be assessed by analyzing the statistical properties of the

residual errors, which is essentially the approach we take in

this test for the broadband processor design on synthesized

data performance as well as the calculated MSE estimates.

The results of the Bayesian design are shown in Fig. 1 where

we see the enhanced pressure-field and the corresponding

innovations sequence as a function of depth. Note from Eq.

26 that the modal estimates Φ̂(z`, ωq) along with the mea-

surement model at each temporal frequency, CT (rs, zs, ωq) are

used to construct the enhanced pressure-field, p̂(z`, ωq) at each

temporal frequency along with the corresponding innovation.

The sequence test zero-mean and white as demonstrated by

the whiteness tests and the corresponding WSSR statistic lying

below the threshold in Fig. 2. To complete the performance

analysis, we observe the posterior pressure-field distribution

predicted by the PF at each depth in Fig. 3. Clearly this

distribution is not unimodal, but both MAP/MMSE inferences

“track” the mean (true) pressure-field quite well as confirmed

by the zero-mean/whiteness tests of the residual errors.

Thus, we have achieved a “broadband” design. Note that

the enhanced pressure-field estimates (MAP, MMSE), are



governed by the model of Eq. 26 and indicates precisely what

the array is sampling at a particular frequency.

The estimated modal functions extracted from the noisy

pressure-field measurements are viable estimates and shown in

Fig. 4 bounding the estimates we could hope to achieve for this

type of data. Here we observe both MAP and MMSE estimates

inferred from the predicted posterior modal distributions. The

results are quite reasonable. In Fig. 4 we observe the enhanced

modal functions corresponding to the two (2) modes at 50Hz
and three (3) at 60Hz. The other estimated modes (from the

noisy data) at 70Hz (3 modes), 80Hz (4 modes), 90Hz (4
modes) and 100Hz (5 modes) are also shown.

Modal function tracking of the broadband data presents

another aspect of the PF estimates. The RMS MSE estimates

for each of the modal functions are shown in Table III where

we observe small mode tracking errors again indicating a well-

tuned Bayesian processor. The estimated posterior distribution

(slices) at depths of z = 1m, 25m, 50m, 75m, 100m are

shown in Fig. 5. Each slice is a cut (probability vs particles

at a given depth) of the posterior surface for each particular

mode. Figure 9 provides a glimpse of how the actual particles

“coalesce” around distribution peaks (regions of highest im-

portance) from the posterior modal distributions provided by

the PF varying at given depths. This completes the application

of the broadband Bayesian processor designed to enhance

the pressure-field surface and extract the corresponding modal

functions.

V. SUMMARY

In this paper we have developed a sequential Bayesian

solution to the broadband pressure-field enhancement and

modal function tracking (enhancement) problem. Modeling a

shallow ocean environment by a normal-mode propagator, we

developed a broadband Bayesian solution. We showed how

each of the corresponding temporal frequency bands lead to

an underlying state-space structure which is eventually used

in the development of a forward propagator for simulation

and the resulting processor for enhancement. We developed

a shallow ocean simulation using SNAP [19] to solve the

associated boundary value problem first and supplied these

parameters to implement the Bayesian processor. We showed

the results of the design demonstrating the capability of such

an approach.
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Fig. 1. Broadband shallow water environment pressure-field enhancement:

Raw data (SNR=0dB), particle filter estimates (MAP, MMSE) and residual
errors (innovations).

Fig. 2. Broadband Bayesian processor residual error (innovation) sequence
zero-mean/whiteness test results: (1.56% out; 9 × 10−6 <0.245) and WSSR

below threshold.

Fig. 3. Predicted pressure-field posterior distribution.



Fig. 4. Broadband shallow water environment mode tracking: Particle filter
modal function (21) estimation (MAP, MMSE).

Table III. Mode Tracking Estimation

PF Performance

Frequency(Hz) Mode No. MSE

50 1 0.03244469

2 0.06390081

60 1 0.02057981

2 0.02262004

3 0.00725442

70 1 0.1173259

2 0.07374703

3 0.01009431

80 1 0.1376377

2 0.03716592

3 0.01584901

4 0.01425319

90 1 0.1104416

2 0.02928122

3 0.01980555

4 0.00782307

100 1 0.3176212

2 0.06316895

3 0.01011795

4 0.01544138

5 0.00450539
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